intquickpow(int a,int b,int p){int ret =1;while(b){if(b &1) ret = ret * a % p;
a = a * a % p; b >>=1;}return ret;}// calculate the smallest x such that a^x = b (mod p)intBSGS(int a,int b,int p){// x = uP - v
map<int,int> mp;int P =ceil(sqrt(p)), pw =1;for(int v =0; v <= P;++v){
mp[pw * b % p]= v;
pw = pw * a % p;}int ans = INT_MAX;for(int u =1; u <= P;++u){int t =quickpow(a, u * P, p);if(mp.find(t)!= mp.end()) ans =min(ans, u * P - mp[t]);}return ans;}
C++
exBSGS 当 a,p 不互质下的 BSGS
发现左右两边同时除以一下 gcd(a,p),如果还是不互质就继续除,直到互质为止,此时假设除了 k 次,式子就会变成 Dakax−k≡b(modDp),然后 BSGS 就可以处理了。
// calculate the smallest x such that a^x = b (mod p)intexBSGS(int a,int b,int p){int d =__gcd(a, p), k =0, A =1;if(b ==1)return0;while(d >1){if(p ==1)return k;if(b % d)return-1;
p /= d; b /= d; A = A *(a / d)% p;++k;
d =__gcd(a, p);if(A == b)return k;}if(p ==1)return k;// a^k/D*a^{x-k}=b/D(mod p/D), BSGS
map<int,int> mp;
mp[b]=0;int P =ceil(sqrtl(p)), pw =1;for(int v =0; v <= P;++v){
mp[pw * b % p]= v;
pw = pw * a % p;}
pw =quickpow(a, P, p);int ans = LLONG_MAX, nw = pw;for(int u =1; u <= P;++u){int t = nw * A % p;if(mp.find(t)!= mp.end()) ans =min(ans, u * P - mp[t]);
nw = nw * pw % p;}return ans == LLONG_MAX ?-1: ans + k;}